On Algorithms for Ordinary Least Squares Regression Spline Fitting: a Comparative Study

نویسنده

  • THOMAS C. M. LEE
چکیده

Regression spline smoothing is a popular approach for conducting nonparametric regression. An important issue associated with it is the choice of a ‘‘theoretically best’’ set of knots. Different statistical model selection methods, such as Akaike’s information criterion and generalized cross-validation, have been applied to derive different ‘‘theoretically best’’ sets of knots. Typically these best knot sets are defined implicitly as the optimizers of some objective functions. Hence another equally important issue concerning regression spline smoothing is how to optimize such objective functions. In this article different numerical algorithms that are designed for carrying out such optimization problems are compared by means of a simulation study. Both the univariate and bivariate smoothing settings will be considered. Based on the simulation results, recommendations for choosing a suitable optimization algorithm under various settings will be provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No penalty no tears: Least squares in high-dimensional linear models

Ordinary least squares (OLS) is the default method for fitting linear models, but is not applicable for problems with dimensionality larger than the sample size. For these problems, we advocate the use of a generalized version of OLS motivated by ridge regression, and propose two novel three-step algorithms involving least squares fitting and hard thresholding. The algorithms are methodological...

متن کامل

PEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION

Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...

متن کامل

Comparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea

In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...

متن کامل

A Comparison of Thin Plate and Spherical Splines with Multiple Regression

Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...

متن کامل

Consistent least squares fitting of ellipsoids

A parameter estimation problem for ellipsoid fitting in the presence of measurement errors is considered. The ordinary least squares estimator is inconsistent, and due to the nonlinearity of the model, the orthogonal regression estimator is inconsistent as well, i.e., these estimators do not converge to the true value of the parameters, as the sample size tends to infinity.A consistent estimato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002